Processing math: 100%

25 Kasım 2024 Pazartesi

Çekilişlerde zugzwang yok

Satrançta hamle kimdeyse avantaj da ondadır. Büyük ustaların oyunlarında kimi zaman bir hamle kaybedenlerin oyundan çekildiği dahi görülür. Öte yandan, nadiren de olsa, hamle sırası kimdeyse o oyuncunun kesinlikle partiyi kaybettiği bazı oyun sonu durumları da vardır. Bunlara literatürde zugzwang denir. Bugünkü postada basit bir çekiliş probleminde hiç zugzwang olmadığını göstereceğiz. Çalışacağımız çekiliş problemi aşağıda.

Soru: Alp ve Burcu içinde n adet kırmızı ve m adet siyah top bulunan bir torbadan sırayla top çekiyorlar. Kırmızı topu ilk çeken oyunu kazanıyor ve eğer siyah top çekilmişse o zaman top tekrar torbaya konuyor. Oyuna Alp başladığına göre Alp'in çekilişi kazanma ihtimali nedir?

Kurguya göre kZ+ olmak üzere Alp birinci, üçüncü, beşinci ve genel olarak (2k1). çekilişleri yaparken Burcu da ikinci, dördüncü, altıncı ve genel olarak 2k. çekilişleri yapmaktadır. A2k+1 ilk 2k çekilişte peşpeşe siyah top çekilirken (2k+1). çekilişte kırmızı top çekildiği durumları temsil etsin. Bu durumlarda Alp çekilişi kazanmaktadır. P(A1)=nn+m, P(A3)=(mn+m)2nn+m ve genel olarak P(A2k+1)=(mn+m)2knn+m olur. Bütün bu ihtimalleri topladığımızda Alp'in çekilişi kazanma ihtimalini de hesaplamış oluruz.

P(Alp):=k=0P(A2k+1)=nn+mk=0(mn+m)2k=nn+mk=0(m2(n+m)2)k=nn+m11m2(n+m)2=n+mn+2m

Alp'in kazanma ihtimali için P(Alp)=n+mn+2m>n2+mn+2m=12 eşitsizliği her zaman geçerli olduğundan, çekilişe başlayan daha şanslıdır.

İşaret: Çekilişin anlamlı olabilmesi için nm olmalıdır. Bu asimptotikte P(Alp)1/2 olduğundan çekiliş nisbeten daha adil olmaktadır.

Ödev: n=3, m=7 olsun ama çekilen top torbaya konulmasın. Bu durumda Alp'in kazanma ihtimalini hesaplayınız.

23 Kasım 2024 Cumartesi

Siklotomik polinomlarla çözülen bir geometri problemi

Soru: Birim çember üzerinde birbirine uzaklığı eşit n nokta seçilsin ve daha sonra bu noktalardan biri sabit tutulup diğer n1 noktaya doğru parçaları çizilsin. Doğru parçalarının uzunlukları çarpımı n olur. İspatlayınız.

Bu problemi Bak ve Newman'ın beraber kaleme aldığı Kompleks Analiz kitabının ilk faslında gördüm. Çözümüne beraber bakalım. Birim çember üzerinde birbirine uzaklığı eşit n nokta denildiğinde aklımıza ilk gelmesi gereken konu 1'in n. dereceden kökleridir. Bu kökler zn1=0 denklemini sağlar. Bu denklemin köklerinden bir tanesi ve en bariz olanı 1'dir. Diğerlerini de ζj:=exp(2πij/n) formülüyle ifade edebiliriz. Burada i:=1 ve j{0,,n1}. ζnj=1 olduğundan bu niceliklerin 1'in n. dereceden kökü olduğu barizdir.

Şimdi elimizdeki cebirsel ifadeyi çarpanlarına ayıralım. zn1=(z1)φn(z)  ve burada  φn(z):=zn1+zn2++z+1. Çarpanlara ayırma işlemi sırasında zuhur eden φn polinomlarına cebir literatüründe siklotomik polinomlar denir. Cebirin temel teoremi uyarınca siklotomik polinomları 1'in n. dereceden kökleri cinsinden hemen çarpanlarına ayırabiliriz. φn(z)=(zζ1)(zζn1)

Gelelim problemin çözümüne. Genelliği kaybetmeden birim çember üzerinde aldığımız ilk nokta ζ0=(1,0) noktası olsun. Bu noktadan herhangi bir ζj noktasına çizilen doğru parçasının uzunluğu |ζ0ζj|=|1ζj| olur. Bu uzunlukların çarpımı ise |(1ζ1)(1ζn1)|=|φn(1)|=n kolayca hesaplanır.

Ödev: |ζj+1ζj| uzunluğunu hesaplayarak düzgün n-genin kenar uzunluğunu n cinsinden ifade ediniz.