Alan ve hacim hesaplamaları geometrinin çıkış noktalarından birisidir. Küp, silindir, dikdörtgenler prizması gibi basit şekillerin hacim formülleri tanımlar kovalanarak kolayca bulunurken koni, küre, düzgün dörtyüzlü gibi şekillerin hacimlerinin hesaplanmasının genellikle integral alınarak
hesaplandığından söz edilir. Koni Eski Yunanlılarca adına konik kesitler denilen parabol, hiperbol, elips ve çember gibi şekilleri içerdiği için çalışılmıştır. Dahası Arşimet, koninin hacmini kullanarak kürenin hacmini de integral kullanmadan hesaplamıştır. Biz bu postada, hiç integral kullanmadan koni ve benzeri şekillerin hacimlerini hesaplayacağız.
Koniden, koniye benzer bir kısmı tabana paralel olacak şekilde keselim. Aşağıda kalan parçaya literatürde frustum denmektedir. Frustumun yüksekliği h1, taban alanı ise S1 olsun. Benzer şekilde kesilen koninin yüksekliğine h2, taban alanına ise S2 diyelim. Taban alanların kare kökleri koni tabanlarını oluşturan yarı çapla orantılı olduğundan, üçgenlerin benzerliğinden faydalanarak
√S2S1=h2h1+h2
Burada yaptığımız çalışmanın piramitler ve düzgün dörtyüzlü içinde geçerli olduğunu ve ilgili cisimlerinin taban alanı ve yükseklik çarpımlarının üçte birinin onların hacmini vereceğini gözleyiniz.
Hiç yorum yok:
Yorum Gönder