10 Ağustos 2015 Pazartesi

Düzgün onyedigenin trigonometrisi

Cetvel ve pergelle eşkenar üçgeni, kareyi, düzgün beşgeni ve altıgeni çizmeyi bize Öklit öğretti. Gauss ise çok genç yaşlarında düzgün onyedigenin cetvel ve pergelle çizilebileceğini ispatladı. Burada cetvel pergel çizimlerinden ziyade düzgün onyedigendeki tepe açısının trigonometrisine bakacağız. Bir çemberi merkezinden 17 eşit parçaya dilimlersek, o zaman düzgün onyedigeni de 17 denk ikizkenar üçgenin yamalanmış hali gibi çizebiliriz. Bu üçgenlerin tepe açısı α:=2π/17 kadardır. Bu açıyı tarif etmek için onun trigonometrik değerlerine, mesela cos(α) değerine, bakabiliriz. O zaman amacımız netleşti: cos(α) değerini hesaplamak.

Casey'nin A Treatise on Plane Trigonometry adlı kitabının 220. ve 221. sayfalarında bu hesaplamanın nasıl yapılacağına dair bir algoritma var. Kitap bir trigonometri ve cebir harikası, basım tarihi 1888 ve şimdiki ders kitaplarına kıyasla da son derece kaliteli. Casey bu algoritmayı alıştırmalar şeklinde sunmuş. Ben de o alıştırmaları burada çözerek cos(2π/17) değerinin nasıl hesaplanacağını izah etmeye çalışacağım. Öncelikle merkezi bir lemma ile işe başlıyalım.

Lemma: n tamsayı olsun ve γ:=2π/(2n+1) tanımlayalım. O zaman nj=1cos(jγ)=12
olur.

İspat: Verilen toplamı sin(γ) ile çarpıp bölelim ve trigonometrik fonksiyonların sin(a)cos(b)=12(sin(a+b)+sin(ab)) özdeşliğinden faydalanalım. 1sin(γ)nj=1sin(γ)cos(jγ)=12sin(γ){nj=1sin((j+1)γ)nj=1sin((j1)γ)}=12sin(γ){n+1k=2sin(kγ)n1k=0sin(kγ)}=12sin(γ)(sin((n+1)γ)+sin(nγ)sin(γ))=12
İspatı bitirmek için (n+1)γ+nγ=2π bilgisini kullandık.
Biz bu lemmayı aşağıdaki formuyla kullanacağız. cos(α)+cos(2α)+cos(3α)+cos(4α)+cos(5α)+cos(6α)+cos(7α)+cos(8α)=12

Birinci aşamada x2+x4=0

denkleminin köklerini cos(jα) trigonometrik polinomları cinsinden temsil etmekle işe başlıyoruz. a1:=2(cos(α)+cos(2α)+cos(4α)+cos(8α))   vea2:=2(cos(3α)+cos(5α)+cos(6α)+cos(7α))
tanımları verildiğinde (???) nolu denklem uyarınca a1+a2=1 olduğunu gözleyiniz. Dolayısıyla a1 ve a2 (???) nolu denklemin kökler toplamına uymaktadır. Tahmin ettiğiniz gibi kökler çarpımına da bakacağız. Ama bu biraz kıllı. a1a2=4(cos(α)+cos(2α)+cos(4α)+cos(8α))(cos(3α)+cos(5α)+cos(6α)+cos(7α))=4(cos(α)cos(3α)+cos(α)cos(5α)+cos(α)cos(6α)+cos(α)cos(7α)+cos(2α)cos(3α)+cos(2α)cos(5α)+cos(2α)cos(6α)+cos(2α)cos(7α)+cos(4α)cos(3α)+cos(4α)cos(5α)+cos(4α)cos(6α)+cos(4α)cos(7α)+cos(8α)cos(3α)+cos(8α)cos(5α)+cos(8α)cos(6α)+cos(8α)cos(7α))=2(cos(4α)+cos(2α)+cos(6α)+cos(4α)+cos(7α)+cos(5α)+cos(8α)+cos(6α)+cos(5α)+cos(α)+cos(7α)+cos(3α)+cos(8α)+cos(4α)+cos(9α)+cos(5α)+cos(7α)+cos(α)+cos(9α)+cos(α)+cos(10α)+cos(2α)+cos(11α)+cos(3α)+cos(11α)+cos(5α)+cos(13α)+cos(3α)+cos(14α)+cos(2α)+cos(15α)+cos(α))=2(4cos(α)+3cos(2α)+3cos(3α)+3cos(4α)+4cos(5α)+2cos(6α)+3cos(7α)+2cos(8α)+2cos(9α)+cos(10α)+2cos(11α)+cos(13α)+cos(14α)+cos(15α))=8(cos(α)+cos(2α)+cos(3α)+cos(4α)+cos(5α)+cos(6α)+cos(7α)+cos(8α))=4
Bu denklemde cos(a)cos(b)=12(cos(a+b)+cos(ab)) ve α açısının özel değerinden ötürü cos(jα)=cos((17j)α) özdeşlikleri ile (???) nolu denklemden faydalandık. a1 ve a2 hem kökler toplamını hem de kökler çarpımını sağlıyorlar. O zaman bunlar (???) nolu denklemin köküdür. Bariz olanı ifade edelim. a1=1+172a2=1172

Algoritmanın ikinci aşamasında b1:=2(cos(α)+cos(4α))b2:=2(cos(2α)+cos(8α))

tanımlıyoruz ve bu niceliklerin x2a1x1=0
denkleminin köklerini temsil ettiğini gösteriyoruz. Yöntem bir önceki basamaktakiyle tamamen aynı. Öncelikle b1+b2=a1 net bir şekilde gözleniyor. Ardından b1b2=4(cos(α)+cos(4α))(cos(2α)+cos(8α))=4(cos(α)cos(2α)+cos(α)cos(8α)+cos(4α)cos(2α)+cos(4α)cos(8α))=2(cos(3α)+cos(α)+cos(9α)+cos(7α)+cos(6α)+cos(2α)+cos(12α)+cos(4α))=2(cos(α)+cos(2α)+cos(3α)+cos(4α)+cos(5α)+cos(6α)+cos(7α)+cos(8α))=1
ile kökler çarpımına da uyduğundan ispatımız tamamlanmış oluyor. b1=a1+a21+42b2=a1a21+42
denklemlerinde a1 sayısal değeri bilindiğinden, b1 ve b2 de sadece karekök işlemi kullanılarak hesaplanmış olmaktadır. Okur bir alıştırma olarak x2a2x1=0
denkleminin köklerinin c1:=2(cos(3α)+cos(5α))=a2+a22+42c2:=2(cos(6α)+cos(7α))=a2a22+42
olduğunu göstermelidir. Burada c1 ve c2 sayısal değerlerinin hesaplanabildiğini vurguluyoruz.

Algoritmanın üçüncü ve son aşamasında x2b1x+c1=0

denkleminin köklerini temsil etmeye çalışacağız. d1:=2cos(α)d2:=2cos(4α)
tanımlayalım. d1+d2=b1 olduğu barizdir. Devamla d1d2=4cos(α)cos(4α)=2(cos(3α)+cos(5α))=c1 olduğundan kökler temsil edilmiş olur. Ama cos(α)=12d1=b1+b214c14
olduğundan, hesaplamamız sonlanmıştır.

Hiç yorum yok:

Yorum Gönder